8 research outputs found

    Temporal and spatial differences of methane flux at arctic tundra in Alaska

    Get PDF
    High latitude ecosystems were thought to enhance CH_4 emission in relation to the current arctic warming. However, we have little information about this potential feedback mechanisms on climate change, thus, model parameterization is insufficient and the observational data are required. We observed CH_4 flux at several types of tundra in Alaska over the growing seasons since 1995. From these observed data, we examined current CH_4 emission and its controlling factors on Alaskan tundra. Then we discussed about spatial and temporal differences in CH_4 flux. Daily trend of half hourly CH_4 flux had little relation with soil temperature, but the seasonal trend of daily flux changed with soil or water temperature. Cumulative CH_4 fluxes during the growing seasons were 8.1gCH_4m^(-2) on wet sedge tundra at Happy Valley in 1995, 3.3gCH_4m^(-2) on non-acidic moist tundra in 1996, and 3.58-8.24gCH_4m^(-2) on wet sedge tundra at Barrow between 1999-2003. Non-acidic tundra had low CH_4 emission with low CO_2 accumulation. There was large spatial difference in CH_4 flux caused by tundra type, and the large temporal difference at the wet sedge tundra reflected yearly weather variability

    Aircraft Regional-Scale Flux Measurements over Complex Landscapes of Mangroves, Desert, and Marine Ecosystems of Magdalena Bay, Mexico

    Get PDF
    Natural ecosystems are rarely structurally simple or functionally homogeneous. This is true for the complex coastal region of Magdalena Bay, Baja California Sur, Mexico, where the spatial variability in ecosystem fluxes from the Pacific coastal ocean, eutrophic lagoon, mangroves, and desert were studied. The Sky Arrow 650TCN environmental research aircraft proved to be an effective tool in characterizing land–atmosphere fluxes of energy, CO2, and water vapor across a heterogeneous landscape at the scale of 1 km. The aircraft was capable of discriminating fluxes from all ecosystem types, as well as between nearshore and coastal areas a few kilometers distant. Aircraft-derived average midday CO2 fluxes from the desert showed a slight uptake of −1.32 μmol CO2 m−2 s−1, the coastal ocean also showed an uptake of −3.48 μmol CO2 m−2 s−1, and the lagoon mangroves showed the highest uptake of −8.11 μmol CO2 m−2 s−1. Additional simultaneous measurements of the normalized difference vegetation index (NDVI) allowed simple linear modeling of CO2 flux as a function of NDVI for the mangroves of the Magdalena Bay region. Aircraft approaches can, therefore, be instrumental in determining regional CO2 fluxes and can be pivotal in calculating and verifying ecosystem carbon sequestration regionally when coupled with satellite-derived products and ecosystem models

    DOC export is exceeded by C fixation in May Creek: A late-successional watershed of the Copper River Basin, Alaska.

    No full text
    Understanding the entirety of basin-scale C cycling (DOC fluxes and CO2 exchanges) are central to a holistic perspective of boreal forest biogeochemistry today. Shifts in the timing and magnitude of dissolved organic carbon (DOC) delivery in streams and eventually into oceans can be expected, while simultaneously CO2 emission may exceed CO2 fixation, leading to forests becoming stronger CO2 sources than sinks amplifying rising trace gases in the atmosphere. At May Creek, a representative late-successional boreal forest watershed at the headwaters of the Copper River Basin, Alaska, we quantified the seasonality of DOC flux and landscape-scale CO2 exchange (eddy covariance) over two seasonal cycles. We deployed in situ fDOM and conductivity sensors, performed campaign sampling for water quality (DOC and water isotopes), and used fluorescence spectroscopy to ascertain DOC character. Simultaneously, we quantified net CO2 exchange using a 100 ft eddy covariance tower. Results indicate DOC exports were pulse-driven and mediated by precipitation events. Both frequency and magnitude of pulse-driven DOC events diminished as the seasonal thaw depth deepened, with inputs from terrestrial sources becoming major contributors to the DOC pool with decreasing snowmelt contribution to the hydrograph. A three-component parallel factorial analysis (PARAFAC) model indicated DOC liberated in late-season may be bioavailable (tyrosine-like). Combining Net Ecosystem Exchange (NEE) measurements indicate that the May Creek watershed fixes 142-220 g C m-2 yr-1 and only 0.40-0.57 g C m-2 yr-1 is leached out as DOC. Thus, the May Creek watershed and similar mature spruce forest dominated watersheds in the Copper River Basin are currently large ecosystem C sinks and exceeding C conservative. An understanding of DOC fluxes from Gulf of Alaska watersheds is important for characterizing future climate change-induced seasonal shifts

    DOC export is exceeded by C fixation in May Creek:a late-successional watershed of the Copper River Basin, Alaska

    No full text
    Abstract Understanding the entirety of basin-scale C cycling (DOC fluxes and CO₂ exchanges) are central to a holistic perspective of boreal forest biogeochemistry today. Shifts in the timing and magnitude of dissolved organic carbon (DOC) delivery in streams and eventually into oceans can be expected, while simultaneously CO₂ emission may exceed CO₂ fixation, leading to forests becoming stronger CO₂ sources than sinks amplifying rising trace gases in the atmosphere. At May Creek, a representative late-successional boreal forest watershed at the headwaters of the Copper River Basin, Alaska, we quantified the seasonality of DOC flux and landscape-scale CO₂ exchange (eddy covariance) over two seasonal cycles. We deployed in situ fDOM and conductivity sensors, performed campaign sampling for water quality (DOC and water isotopes), and used fluorescence spectroscopy to ascertain DOC character. Simultaneously, we quantified net CO₂ exchange using a 100 ft eddy covariance tower. Results indicate DOC exports were pulse-driven and mediated by precipitation events. Both frequency and magnitude of pulse-driven DOC events diminished as the seasonal thaw depth deepened, with inputs from terrestrial sources becoming major contributors to the DOC pool with decreasing snowmelt contribution to the hydrograph. A three-component parallel factorial analysis (PARAFAC) model indicated DOC liberated in late-season may be bioavailable (tyrosine-like). Combining Net Ecosystem Exchange (NEE) measurements indicate that the May Creek watershed fixes 142–220 g C m-2 yr-1 and only 0.40–0.57 g C m-2 yr-1 is leached out as DOC. Thus, the May Creek watershed and similar mature spruce forest dominated watersheds in the Copper River Basin are currently large ecosystem C sinks and exceeding C conservative. An understanding of DOC fluxes from Gulf of Alaska watersheds is important for characterizing future climate change-induced seasonal shifts

    The influence of human activity in the Arctic on climate and climate impacts

    No full text
    Human activities in the Arctic are often mentioned as recipients of climate-change impacts. In this paper we consider the more complicated but more likely possibility that human activities themselves can interact with climate or environmental change in ways that either mitigate or exacerbate the human impacts. Although human activities in the Arctic are generally assumed to be modest, our analysis suggests that those activities may have larger influences on the arctic system than previously thought. Moreover, human influences could increase substantially in the near future. First, we illustrate how past human activities in the Arctic have combined with climatic variations to alter biophysical systems upon which fisheries and livestock depend. Second, we describe how current and future human activities could precipitate or affect the timing of major transitions in the arctic system. Past and future analyses both point to ways in which human activities in the Arctic can substantially influence the trajectory of arctic system change

    A Robust Calibration Method for Continental-Scale Soil Water Content Measurements

    Get PDF
    Technological advances have allowed in situ monitoring of soil water content in an automated manner. These advances, along with an increase in large-scale networks monitoring soil water content, stress the need for a robust calibration framework that ensures that soil water content measurements are accurate and reliable. We have developed an approach to make consistent and comparable soil water content sensor calibrations across a continental-scale network in a production framework that incorporates a thorough accounting of uncertainties. More than 150 soil blocks of varying characteristics from 33 locations across the United States were used to generate soil-specific calibration coefficients for a capacitance sensor. We found that the manufacturer’s nominal calibration coefficients poorly fit the data for nearly all soil types. This resulted in negative (91% of samples) and positive (5% of samples) biases and a mean root mean square error (RMSE) of 0.123 cm cm (1σ) relative to reference standard measurements. We derived soil-specific coefficients, and when used with the manufacturer’s nominal function, the biases were corrected and the mean RMSE dropped to ±0.017 cm cm (±1σ). A logistic calibration function further reduced the mean RMSE to ±0.016 cm cm (±1σ) and increased the range of soil moistures to which the calibration applied by 18% compared with the manufacturer’s function. However, the uncertainty of the reference standard was notable (±0.022 cm cm), and when propagated in quadrature with RMSE estimates, the combined uncertainty of the calibrated volumetric soil water content values increased to ±0.028 cm cm regardless of the calibration function used
    corecore